Extensions 1→N→G→Q→1 with N=C32×C9 and Q=C6

Direct product G=N×Q with N=C32×C9 and Q=C6
dρLabelID
C33×C18486C3^3xC18486,250

Semidirect products G=N:Q with N=C32×C9 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C32×C9)⋊1C6 = S3×C32⋊C9φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9):1C6486,95
(C32×C9)⋊2C6 = C9×C32⋊C6φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):2C6486,98
(C32×C9)⋊3C6 = S3×He3.C3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):3C6486,120
(C32×C9)⋊4C6 = S3×He3⋊C3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):4C6486,123
(C32×C9)⋊5C6 = He3⋊D9φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):5C6486,25
(C32×C9)⋊6C6 = C3×C32⋊D9φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9):6C6486,94
(C32×C9)⋊7C6 = D9×He3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):7C6486,99
(C32×C9)⋊8C6 = C3×He3.S3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):8C6486,119
(C32×C9)⋊9C6 = C3×He3.2S3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):9C6486,122
(C32×C9)⋊10C6 = C33⋊D9φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):10C6486,137
(C32×C9)⋊11C6 = He33D9φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):11C6486,142
(C32×C9)⋊12C6 = (C32×C9)⋊C6φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):12C6486,151
(C32×C9)⋊13C6 = C324D9⋊C3φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):13C6486,170
(C32×C9)⋊14C6 = He3⋊C33S3φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):14C6486,173
(C32×C9)⋊15C6 = D9⋊He3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):15C6486,106
(C32×C9)⋊16C6 = C9⋊He32C2φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):16C6486,148
(C32×C9)⋊17C6 = C3≀C3.S3φ: C6/C1C6 ⊆ Aut C32×C9276+(C3^2xC9):17C6486,175
(C32×C9)⋊18C6 = C32×C9⋊C6φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9):18C6486,224
(C32×C9)⋊19C6 = C3×C33.S3φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9):19C6486,232
(C32×C9)⋊20C6 = C3×He3.4S3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):20C6486,234
(C32×C9)⋊21C6 = C34.11S3φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):21C6486,244
(C32×C9)⋊22C6 = C9○He33S3φ: C6/C1C6 ⊆ Aut C32×C981(C3^2xC9):22C6486,245
(C32×C9)⋊23C6 = C9⋊He3⋊C2φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):23C6486,107
(C32×C9)⋊24C6 = C3×S3×3- 1+2φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9):24C6486,225
(C32×C9)⋊25C6 = S3×C9○He3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9):25C6486,226
(C32×C9)⋊26C6 = C3⋊S3×3- 1+2φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9):26C6486,233
(C32×C9)⋊27C6 = C2×He3⋊C9φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):27C6486,77
(C32×C9)⋊28C6 = C6×C32⋊C9φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):28C6486,191
(C32×C9)⋊29C6 = C18×He3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):29C6486,194
(C32×C9)⋊30C6 = C2×C32.23C33φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):30C6486,199
(C32×C9)⋊31C6 = C6×He3.C3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):31C6486,211
(C32×C9)⋊32C6 = C6×He3⋊C3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):32C6486,212
(C32×C9)⋊33C6 = C2×C9⋊He3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):33C6486,198
(C32×C9)⋊34C6 = C2×C9.He3φ: C6/C2C3 ⊆ Aut C32×C9543(C3^2xC9):34C6486,214
(C32×C9)⋊35C6 = C3×C6×3- 1+2φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):35C6486,252
(C32×C9)⋊36C6 = C6×C9○He3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9):36C6486,253
(C32×C9)⋊37C6 = S3×C32×C9φ: C6/C3C2 ⊆ Aut C32×C9162(C3^2xC9):37C6486,221
(C32×C9)⋊38C6 = C3⋊S3×C3×C9φ: C6/C3C2 ⊆ Aut C32×C954(C3^2xC9):38C6486,228
(C32×C9)⋊39C6 = D9×C33φ: C6/C3C2 ⊆ Aut C32×C9162(C3^2xC9):39C6486,220
(C32×C9)⋊40C6 = C32×C9⋊S3φ: C6/C3C2 ⊆ Aut C32×C954(C3^2xC9):40C6486,227
(C32×C9)⋊41C6 = C3×C324D9φ: C6/C3C2 ⊆ Aut C32×C9162(C3^2xC9):41C6486,240

Non-split extensions G=N.Q with N=C32×C9 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C32×C9).1C6 = C32⋊C54φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9).1C6486,16
(C32×C9).2C6 = S3×C3.He3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9).2C6486,124
(C32×C9).3C6 = C9⋊S3⋊C9φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9).3C6486,3
(C32×C9).4C6 = (C3×C9)⋊C18φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9).4C6486,20
(C32×C9).5C6 = C9⋊S33C9φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9).5C6486,22
(C32×C9).6C6 = D9×3- 1+2φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9).6C6486,101
(C32×C9).7C6 = C3×C9⋊C18φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9).7C6486,96
(C32×C9).8C6 = D9⋊3- 1+2φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9).8C6486,108
(C32×C9).9C6 = C9⋊(S3×C9)φ: C6/C1C6 ⊆ Aut C32×C954(C3^2xC9).9C6486,138
(C32×C9).10C6 = C923S3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9).10C6486,139
(C32×C9).11C6 = S3×C9⋊C9φ: C6/C1C6 ⊆ Aut C32×C9162(C3^2xC9).11C6486,97
(C32×C9).12C6 = S3×C27⋊C3φ: C6/C1C6 ⊆ Aut C32×C9546(C3^2xC9).12C6486,114
(C32×C9).13C6 = C2×C3.C92φ: C6/C2C3 ⊆ Aut C32×C9486(C3^2xC9).13C6486,62
(C32×C9).14C6 = C2×C32⋊C27φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).14C6486,72
(C32×C9).15C6 = C2×C32.19He3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).15C6486,74
(C32×C9).16C6 = C2×C32.20He3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).16C6486,75
(C32×C9).17C6 = C2×3- 1+2⋊C9φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).17C6486,78
(C32×C9).18C6 = C6×C9⋊C9φ: C6/C2C3 ⊆ Aut C32×C9486(C3^2xC9).18C6486,192
(C32×C9).19C6 = C18×3- 1+2φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).19C6486,195
(C32×C9).20C6 = C2×C33.31C32φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).20C6486,201
(C32×C9).21C6 = C6×C3.He3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).21C6486,213
(C32×C9).22C6 = C2×C9.4He3φ: C6/C2C3 ⊆ Aut C32×C9543(C3^2xC9).22C6486,76
(C32×C9).23C6 = C2×C923C3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).23C6486,193
(C32×C9).24C6 = C2×C9⋊3- 1+2φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).24C6486,200
(C32×C9).25C6 = C6×C27⋊C3φ: C6/C2C3 ⊆ Aut C32×C9162(C3^2xC9).25C6486,208
(C32×C9).26C6 = S3×C92φ: C6/C3C2 ⊆ Aut C32×C9162(C3^2xC9).26C6486,92
(C32×C9).27C6 = S3×C3×C27φ: C6/C3C2 ⊆ Aut C32×C9162(C3^2xC9).27C6486,112
(C32×C9).28C6 = C3⋊S3×C27φ: C6/C3C2 ⊆ Aut C32×C9162(C3^2xC9).28C6486,161
(C32×C9).29C6 = D9×C3×C9φ: C6/C3C2 ⊆ Aut C32×C954(C3^2xC9).29C6486,91
(C32×C9).30C6 = C9×C9⋊S3φ: C6/C3C2 ⊆ Aut C32×C954(C3^2xC9).30C6486,133

׿
×
𝔽